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Riley A Smoky 1 Parllel Mlodel of Problem Solving

A PARALLEL MODEL OF (SEQUENTIAL) PROBLEM SOLVING

Nature of Ruis and Their Interation

This ppris coacurned with the nature of the rules involved in solving problem and the
interaction among those rules. We describe a parallel model designed to solve a clms of relatively
simple problem from elementary physics and discuss its implications for models of problem solving in
vinu. We show how one of the ma - salient features of problem solving. sequentiality, can emerge

moray within a pm!!.! model that has, no explicit knowledgen of how to sequence analysis.

Consider the problem shown in Figur L The task is to determine the qualitative effects of
increasing the resistnc of R2 on other circuit values, asminS the applied voltage and resistance of R,
remai unchanged.

A common approach to modelling the process of solving problem like these Is to ase that
knowledge is organized a production system imilar to that shown in Table I (see Riley, 1U4, for a
review). Here the model's rules for making inferece ar in the form of condition-action pars, or
predwa. The condition specifies the particular clemnents and relations that must be present in the
dat boo in order for the condition to be true. When the production system is solving a problem, the
conditions of the various productions ane tested in order until one of them is true; the action of that
production is then performed. The action giealy makes some cheap In the data base which in turn
muses the condition of a different production will be true, causing amother action to be performed.

Since production syuteasar univeral computers, they = be programmed to display my
behavior (Newell, 1961). However certain kinds of behavior can be achieved with other styles of
comiputation in more economical, lgt, aseadible and natural ways. Feature that are intrinsic to,
or naturally incorporated within, a pure production system approach are:

1) Seutiddby: each action taken utilize the knowledge contained in precisely one rule.
2) Direcdoseft: the knowledge encoded in each rule has a distinct directionality from input

(condition) to output (action).
3) mw nacMq:- each rule sis only whe, a perfect match to its condition occurs.
4) Deterxsiah.: performance will be identical on all solutions of a given problem.

Within the production system approach it is difficult to naturally avoid certain difflcultics:

1) Leek of asulmodr degrdd* of rdes (either removal of correct rules or addition of
incorrect ones).

2) Leek f robwa odoer Iilfwnsed pekiwa that contain inconsistent or insufficient given
Information.

3) Lack qV vdrimWap in routes to correct sanwrs, or In correctness of answers; a problem for
ma-f humn behavior.

4) Maedfor expikk rewIer eaelauic. rule that determine which rule will apply when several
have true condin.

The parallel distribted processing approach represented by our model naturally avods these

*~* U '* % ** *~ .* %* *~ ~*.~ I.
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miley & Smoledy 3 Pmalld Mod of Problem Solving

Table 1

A Simple Production Syten for Solving the Problem in FIgure 1.

Condition Action

P1. <V" am". as or - I down

P2. < % sp R &~> <Ra

P3. <V2 dw., V d e> <V, IV>

PC < Rme I dr> < V. dw.>

Problem Mmdi.

p~ i Ropragmee~he Mehed Pre.dhm

Cycle Condition Action

1. a. R, sn.Vtwme P2. <Rq.Rm,> < >

2. R2 a. R e. Vtodme. Rad a P1. <Vtd. a. Rmd&P> <I dMo>

3. R sr. Rssme. Vto mew. Ra. OF- 'doM PC < m$e. I down> <V Idom>

4. R2 q* R, ame. Vtow me. Ra tad dowa. V, doam Ps. <V 1 down. Vd me> < V2 NP>

I. R a,. R1 mW. Vd me. R. d AV. ld dam V, dowa. V. ap

, ' r ' ",,, ' , ,V, ,-, ,, .. , .,, . w..* .,.- -*.*..'* -,', -.*-,...,. . .,. v ',..,, ,..'- . -'' e '. .



MlY & SMIGMasY 4 Parale Mod of Problem SoMag

difficulties, but has its own problems, se we shall ams

The Md

Out model has been constructed within the ftamework of harmony theory (Smoleaky, 190,
1964). Rules are: represented n a collection of nodes in a network, as shown in Figure 2. A typical
mule is <1 dow., V, down, R, ase>; this iule states that the combination of chanmps 'voltae across
&1 poea down, current goes down, R, says the same'f is a consistent set (Ohm's Law). In fact, the mkls
consist precisely of all allowed combinations of qualitative changes in circuit variables that arc
consistent with each circuit law. There awe 6S such InstsancesI

Unlike conditIon-action rules, thene is no directionality associated with the variables in the
harmonium rules.

In a particular problem, only some of the Instances represented by harmonlum, rules are relevant.
To represent this, each rule node kms an acdvaim valu that can be either 1 (active) or 0 (inactive).

In addition to rule nodes, the harmonium model contain nodes for representing the problem in
tarm of qualitative changes in circuit variables. Some nodes have values given by the problem
(Rt2 IP, ft~ IaMMe ,VOW arni). The model's answer is represented by values assgned to the remaining
nodes.

As shown in Figur X, there is a connection between an individual circuit variable mode and each
rule involving it; this connection is labelled by the appropriate value for that variable according to that

The Va of processing is to Aind a set of rule nodes to activate and a set of values for circuit
variables that wre consistent with those rules. Seiatch toward this god is guided by a me==r of the

conastemy between a set of activated rules and a set of circuit variables: this memsure is called the
herwafwdhia The state of higes hamny should be the correct saser to the problem.

Noceising is probabilistic ad constructed so that a any moment, dou Mg&r th hwuinmy of e
ew. the mwe prolif i Is. The spread in this probability distribution is determined by a system

parater called the conpoat5..d mpwre 7. Initially, all rule wre inactive, the circuit variables
given by the problem we assined their values, and the rmasining circuit variables we ausiped random
values. The temperature is Me to a high value, and the stochastic sP rc begins Rules wre activated
and deactivated, circuit variable values we changd (meept the given one), and states ane visited In
accordance with their harmony. As the search continues, this temperature is lowered, ad the system
diuplap less and less randomness, ftenslng in on the state of highest harmony. After a while, the
tempmtre becomes very low, and the search is effectively stopped: an aser has been selected.

Sequentiality of deduction seems to be completely Jacking from the harmalums model, although
It is a vary salient feature of huma poblem solving. Just the same, in creating this modal we mpced
it to displa an emergent seriality. If a singie circuit variable is monitored during the searc, it will
fluctuat randomly a firt, and evesitually 'kick Wn to a value that is vay resistant to change. The

t mpeaure at which this occurs is thsw Ifrming temperature for that variable. We eapected that
diffaeat variables would have different t a1mg temperatures, depending on the problem situation; the

1. ThM=a& ta h: Unbeb,' Lmw..- - msen m - RI+ R2, Md them VadMIV ao a', L&w (OMs Oub for R. P 2,

ad Raw)... .. ' ~ ~ . . . ~~V% ~
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Rule Nodes 1 do'"' V dow~~aa R down, R2 down. R, down

odown do urm use 
down 

down down

rcollNes IR

Fipgr 2. A portion of the humomium model's etwok.
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Riley A Smolensky 6 Parallel Model of Problem Solving

one with highest freezing temperature would settle first, which would in turn determine the value
selected for the variable with the next highest freezing temperature, and so on.

In addition to T, harmonium models have a second global parameter, t; it is the sole parameter
in the definition of the harmony function. When oc is near one, only rules that match the current
gesses for circuit values exwtly can become active without lowering the harmony of the state; for low
4vlues of t, approximate matches are sufficient. Initially, it is small, approximate matching is
encouraged, and many rules become activated; a the computation proceeds, K approaches one and the
set of active rules shrinks toward the five that exactly match the answer.

As the node for each circuit variable freezes into a value, it does so under the influence of all the

active rule nodes connected to it. Unlike a production system, matching for rules need not be exact,
and several rules can act at the same time.

The harmony function we used, = well a the schedule for lowering T and raising r., awe shown in
Figure 3. A trial consisted of 400 iterations of 100 node updates each; since there are 79 nodes in the
model, this corresponds to slightly over 500 updates of each node.

The stochasticity of the model produces variability in the behavior. In a run of 30 trials, the
correct answer was produced 28 times. When the 30 values the system assigned to the circuit variables
for each of the 400 iterations ae ave aiged, Figure 4 results. In this graph, Mp is represented by I and
down by -1. Initially, the values for all variables fluctuate around zero; eventually, each goes towards
the correct value. The time at which the four decisions are made e indicated in the last portion of
this figure, in which the regou between .5 and -3 has been removed. The sequence of assignments is
Rmu, I,, V 1, V 2 ; du equee qf "Wjer jegf t/A emerges n tur.Uy from the pwdiel processiig is

e ty Ow asie he de secmve produed in a production system wdel.

The harmonium model displays both types of robustness that are difficult to achieve naturally
with production systems. Since individual inferences are made under the simultanous influence of
several rules, they are ls vulnerable to degradation of a single rule. When inconsistent information is
given in a problem, the harmonium model finds the most consistent (highest harmony) answer possible.
When insufficient information is given, the system finds one of the correct answers, and finds different
answers on different trials. Such a robust tendency to form coherent interpretations of inputs is
important both for modelling human cognition and for building intelligent machines.

Mxteaseas

While the parallel distributed processing approach has certain advantages over the production
system approach, it also has grave disadvantages. The most serious is the difficulty of performing
symbol manipulation. Without variable binding mechanisms, types and tokens, it is difficult to
imagine how to develop a general model capable of analyzing a variety of circuits; our model is
specialized to a single circuit, and even so we must replicate the rules encoding valid instances of
Ohms Law three times (once for each relevant piece of the circuit).

It may be psychologically plauible to postulate a small collection of networks like our
hamonium model (or perhaps one integrated, lare network) incorporating knowledge about similarly
simple circuits (e.g., a circuit with two resistors wired in parallel). These could conceivably serve as
prototypes that would be invoked to deal with pieces of, or schematic versions of, larger circuits.
However some powerful mechanism would still have to coordinate the parallel analyses of circuit
fraents.
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iW -
a i

aa

R1 se. , I down I... R " , down A. [value: 1(active) or O(inactive)]

awe doawn -1 0 +1 j R*1 [value: +1,-I, or 0)

a1  1 I.c Ix. I.e l.ing, [value: +1(true) or-l(false)]

I: w.down sme

Le.: +1 + 1 [r/ changedl
L. +1 -1 1 r, went upI

Harmony function:

Figure 3. Schedules for T and K, represetation of qp. down, arae. and harmony function used in the har-
monium model.
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It is tempting to use a production system for this coordination, combining the strengths of the
two approaches. Such a hybrid model might well be able to analyze complex circuits, but would
display the production system weaknesses (lack of robustness, and so forth) in those aspects of the
analysis that were relegated to the production system.

One interpretation of such a hybrid model is that the production system component is actually
just a complex parallel processing network viewed 0 a higher level of description; the hybrid is of
descriptive levels-there are not two independent processes. It is a major oal of ours to see if parallel
models are capable of exhibiting emergent poduction-like behavior; the emergent seriality of the
present harmonium model is an example of just such behavior.

V. Discuesa

The harmonium model has Implicit knowledge of circuit laws that enable it to model naturally the
nonsymbolic, intuitive component of problem solving that is difficult to model naturally with
production systems and is particularly salient in expertise. At the same time it lacks the explicit
knowledge of symbolic laws that most eaperts possess. Thus to model expert problem solving in
general, it seems necessary to imbed the harmonium model within a hybrid paralleUproduction system
model. We ae, however, investigating whether the symbolic component of experts' processing can be
preempted with conditions of very short response times, making such experimental conditions
appropriate for testing the pure harmonium model. We are also planning to study unschooled
electronics experts to see to what event they are free of conscious rule application in their solution of
simple circuit problems.

Much work remains to be done in analyzing the variation in the model's performance, and
aawessing the dependence of performance on the schedules for T and i and the representation of the
circuit. Indeed it is the development of more powerful representations within the parallel distributed
processing paradigm that is the primary goal of harmony theory; by trying to enrich the knowledge of
our harmonium model to incorporate more smjmbol-like" explicit knowledge of circuit laws, we hope
to pin more insight into how symbol manipulation might emerge from parallel distributed processing.

=
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SmoleakyI Self-Consistency in Parallel Computation

THE MATHEMAIC&L ROLE OF SELN..COISISTENCT

WN PARALLEL COMPUTATION

Analyis d1 EMnrpa PVWeUms of Neural System

4' 4' One approach to the mind/body problem is to view the description of mind asa higher level
description of brain-to view psychological principles m emergent properties of neural systems.

% Certainly before such a view ca be scientifically tosted, a better undemsanding of both brain and mind
ms be established. However, enought is already known about each to make feasbility studies

pousible.

What methodolog i capable of analyzing the emergent properties of larp complex system of
interacting elements? One discipline where this analysis needs to be done is statistical. physics, where
lup-ecale properties of matter ame derived mathematically from the principles believed to govern the
interactions of molecular and sub-molecular conatituents.

Is It possible to apply similar kinds of mathematical analysis to deduce emergent properties of
neural systems? Although the principles goumnin neuronal interaction are by no means n well
understood n those govrning particles models that abstract some of the characteristics of neural
networks have been studied for some time. Hoplield (NI1) has shown that with certain modifications,
standard neural models can be analyzed with mathematics mc like that of statistical physics, and that
emergmnat properties ces be analysed.

One of the central concepts in statistical physics is mppesre. The utility of this concept in
performing difficult computations ha been shown by Kirkpatrick at al. (1983). However the most
important concept in statistical physics, as in adl branches of physics, is that of ~Vte. The meaning of
OeeW in the computational eotm is not obvious; rather than a computational interpretation,
Hoplield offered a general formula for the 'energy of a neural net, while Kirkpatrick et al. hand
erafted lenergy formulae for their particular computations.

The application of statistical physics concepts to computation is now a rather active field of study
(Hinton A Sejnowski, 1913; Hofstadter, 1933; Gaes A Geman, 1983). To provide a solid foundation
h1r this analysis, what is require in my opinion is - thrrpretie of 'ewg' sho eaUaAt a deep

coerdn beiwweu At fermim 4f aw ikdt pAs~*a aef a ceewedt p.Ueus 4f cqdbaL

Is this paper I will present the Interpretation of "energ that lies at the hear of a general
computational approach I have been developing independently of the work of those interested in

nramet or in particular difficult computations. In this interpretation, 'eg'e La meow* qf de
* -.eaem y df a conesma -e. In plae of the term 'energ,' which emphuses the physical

analog, or the mome technical term 'Hmitou~nn which serves only to recall history and account for
the phscst's notation ff, I choose to foueground the measurement of self-consistency by ung the
team hrmy fwAuW4 denoted ff. The general fraework, harmony ihey, Is described in Smolensky
(194); a analysis of learning using this theory Is began In Smolenaky (1983), and an application of the
theory to modelling qualitative analysis of a simple electric circuit (with a discussion of the model's
emerget properties) is described is Riley and Smolasy (1904). In this paper I will focus on the

Ac Y.I
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Satolesky Self-Consistency in Parallel Computation

computational meaning of harmony, posing quickly over other aspects of the theory. The treatment
will be very informal; for more formal presentations the reader is referred to the previously cited

pape.

The Rule of Hmmy In Cemputalea

Before considering how the harmony function is defled, we start with a discussion of how the
harmony function is eed during computation. The basic idea can be framed at a very general level.
During computation, search for an answer is guided by a measure of 'goodnesm of possible answers:
the harmony function H is that measure. The search is stochastic; the computation is a Monte Carlo
random walk through the solution space under the guidance of H. The random walk is designed so
that vntually, the probability at my moment of visiting a point p in the solution space is gven by
the eaineic/ distrihwelc

prob(p) - Ne fW

N is the constant needed to normalize the probabilities so that they sum to one. T is a global
paraeer that determines the spread in the probability distribution.

The canonical distribution is the only continuous relationship between H and probability that
correctly treats the independence of components of a computation. The canonical distribution also
happens to be the distribution on which most of statistical physics is based. (This is no coincidence,
as the notion of independent subsystem in physics maps onto that of independent subcomputations.)
There is an isomorphism that maps the harmony function into minus the Hamiltonian (energ)

function, and T into temperature. This sugeats calling T the ciad renwrwwe of the system.

In physics, the Hamiltonian determines what states re most probable: the states with lowest
SenerV are most probable at all temperatures, and states of high energ have negligible probability

nept at high temperatures. In harmony theory, the harmony function determines what states are
most probable: the states with highest harmony a most probable at all computational temperatures,
and states of low harmony have negligible probability escept at high temperatures. T can be thought
of as setting the scale for what constitutes significant differences in harmony values. In fact, the ratio
of probabilities of two states is e"', where AN is the difference in harmony between the states. If
this difference is small compared to T, the ratio of probabilities will be close to one; if Am is large
compared to T, the state with higher harmony will be many times more probable.

The pal of the computation is to find the state of highest harmony. This means, in particular,
that the state of neat highest harmony should be much less likely. This requires that T be small
compared to the harmony difference between the two highest levels of harmony.

We could simply set T to be such a low value and be done with it. However, this is not a
practical search procedure. The Monte Carlo procedure will, if let run long enough, visit points with
the probabilities given by the canonical distribution. However, the time required to reach this
"thermal equilibrium' ows eatremely rapidly as 7 is lowered. A more practical way of zeroing in on
the state of highest harmony is to start with a high temperature and gradually lower it. Early in the
march, only large harmony differences are significant, and the system quickly makes a crude cut at the
problem, avoiding states of tremely low harmony. As the system cools down, smaller harmony
differences become significant, and more and more states are avoided a the search focuses on states
with harmonies close to the mammal value. If the cooling is done gently, the state of madmal
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harmony should be found in mach less time than by giving T a constant low value.

The Relhim of Harumey to the nvfremment

We have discussed a stochastic search technique that will find states of high harmony. But how
do we design the function H so that the states with high H values give the correct solutions to
problems? Now we must discuss the sense in which H measures self-consistency.

The "correct* answer to problems are often those that satisfy a set of rules. In the circuit analysis
problem considered by Riley and Smolenshy (1984), for emmple, the rules are the physical laws of
simple circuits. Any system that can correctly solve problems such as this must in some sense have a
reprentation of the rules. In harmony theo, the rules are encoded in the harmony function. The
question is, how are these rules encoded, and how can a system develop an appropriate harmony
function through experience?

Of course most cognitive tasks am not as strictly governed by rules as is formal problem solving.
Yet all cognition hinges on the ezplftaion of reshdidtles in d emironsum, even if those regularities
are leas formal than Ohm's Law. Cognition eables organisms to do the compkedo wk take some
limited information about the current state of their environment and make reasonable guesses about
what else is likely to occur in the environment. That is, given sme of the features that specify the
environmental state, the organism can make reasonable guesses about missing features.

In harmony theory, the rulem" applied during the completion task are simply saemeu t
certai foentare -an co.occar In the em'asew. In the circuit application, for cmumple, in place of a
symbolic version of Ohm's Law, V - IR, there are many rulWe that each record a single combination
of qualitative changs in V, I, and R that are consistent with the law. These 'rulesa can in fact be
thought of as memory uraces that might be left behind by individual expeciences in the environment in
which the regularities hold.

Here is the general idea of how to set up a harmony function for performing the completion task
in a gie environment. Imaine the system experiencing many encounters with the environment; each
leaves many traces that each record some of the features that cooccurred. When partial information
about the current state of the environment is given in a completion problem, the harmony of a
Spoible completion of that information is t overall cosuwy etm., inve cA plehlodo dad do e df
dl trace. To spell this out, we consider first how the traces are determined and then how the 'overall
consistencyP is computed.

The traces can be produced automatically by simulating exposure to an environment, or they can

be produced manually by the modeller. The latter technique was used in the circuit problem: each
trace was chosen to be an allowed combination of qualitative changes in the circuit quantities
appeming in a single circuit law. The automatic generation of traces is yet to be explored; the idea is
that traces would be produced in a random fashion (guided by the degree to which potential trames
would enhance system harmony); the statsile perrde of the resulting set of traces would then
govern the emergent behavior of the system.

How is the overall consistency between a completion and the set of all traces computed? The

ides here is that for each trace, a decision needs to be made about whether the instance It recorded is
relevant to the current situation. Borrowing the usag of schema theory, a match between part of a
trace and a completed set of environmental features ca cause the trace to become active. The "overal

i " " " .
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Foslmaecf-the harmony-of a completion is the am ova all active traces of a meure h of the
degre of match between the tram and the completion. A simple deinition of h is the number of
features in the completion that match the trace, em the number that do not match. (A ulightly
more complicated defnition of h was used in the Circuit analysis modd.)

There are now two kinds of variables used in the computation: features of the environmental
sate, and activation values for traces. The processing has two components: computing the harmony
values of possible completions, and making correspondin random decisions about which completions
to visit. Computation of the harmony value requires deciding which traces to activate, and this
requiiss computing the quality of match A between tram and the completion. Jut us the Monte
Carlo search is used to decide what completions to vist, it can be used to decide what traces to
activae. So using the trac to dedne the harmony of completions leads naturaly to emending the

usnh space to include both environmental feature variables ad trace activation values.

The Network Iterpretam: A Computer Impl tsmtalim

It is useful to represent the computation by a network; a portion of the network for the circuit
model is shown In Figure 1. Th activation variables us represented by nodes in the upper lyM each
corresponds to a trace. Th environmental festure vareblies we represented by nodes in the lower
layer. Thee ae connections betmmn a tram variable and all the environments features it
incoporstes. For simplicity, all variables (nodes) or taken to have binary values: trace activation
nodes have values rdm and Lmadw; environmental feature nodes have values premm and drwa.

The Monte Calo search In tbls network representation proceeds us follows. Initially a high
temperature T is chosen, all the tces ia ct foctive, the environmental features we permanently

ed their ven values, and the man ing environmental feature variable are usped rmdom
initial values. Thea processing begis. A node is selected at madom (but not one of the given
fetures). Neat the difference AN bstes the overall network hamonis that would result from the
two possible values for the node is computed. In principle, this computation could be performed in
the node itself, for the only quantities needed are thos to which the node Is connected. Finally, the
node randomly selects a new valu, using s the ratio of pmobilitle for the two values e" I . The
poem of electing a node and seecting a value for that node is Itrated while the temperature T is
guallY lowered according to seome ahedul .

The repeated selection of nodes and umipment of new values can be viewed (following Hopild)
us the synchronous processing of proces located at the nodes and running in pardlel. The r ion
betwea this parallel procesing network and those conidered by Hopleld and Hinton and Sejnowski
is that the harmony model ha a special architecture: there are two clumm of nodes, and connections
between but not within the two clmses. The formula for harmony turns out to be minus that for
Hopaeld's network "er3cV,' taking into account the special architecture ad the numerical amigoments
rdw -1, in sesive - 0; preem - 1, Aae -- I.

Cammmnts - Neural Iplmem

Since hamny theory is computationally-insplred, rather than neuRfly4napired, the relation
between the harmony network and neural networks ha not been developed. However the close
resemblance of the harmony network to Hopfield's neural network might suMt that harmony nodes
corepond to neurons, so a brief comment is appropriate. While it does not seem unreasonable in
principle to identify environmental feature nodes with neurons, it is reasonable to identify trace
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Filpte 1. A portion of the network repreunsttiou of the ciruit sualpi model (hon Riley and
Umolmasky, 1964). Ithe values qp. down. m for environmental features (circuit variable chin..) are
actually fepfeusated by using two binary nodes for each variable.)
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nodes with neurons. Indeed, I imagine that each trace is distributed over the synapses of the neurons
corresponding to the environmental features involved in that trace. 'Activationg of the trace might
correspond to a feedback-mediated rapid enhancement of the strengths of these synapss, = in von der
Msberg (1981). In this sense, even the activation of traces, a primitive operation in the theory as
presently formulated, may be - emegent property of synaptic dynamics.

Even without a precise specifcation of the relation between harmony networks and neurons,
harmony theory offers a mathematical framework within which to explore the emergence of mind from
brain-like processing. The isomorphism between computation and statistical physics which it
represents reds on the identifcation of self-consistency-harmony--as playing a central role
isomorphic to that played by encrV in phyecs.
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This paper discusses a particular clas of paralld distributed processing models of copition:
thermal models. These models employ stochastic ptacem or and rely on a formal mapping
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is defed as the implementation-level description of a Vaerd mathematical framework for
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Smoleaky I Harmony Theory

HARMONY THEORY:

THERMAL PARALLEL MODELS IN A COMPUTATIONAL CONTEXT

In recest yamn considerable effort has been directed at explorng computational architectures
using a larg: number of fairly smple processos running in parallel and communicating with each other
acress a network of links. This style of computation, which I shall refer to as pearl dlwlhaod
proeadar, hkm variously bees called 'massively parallel.' "connectionistic," and oneurally-inspired.v
These names suggest the variety of disciplines that have found parallel distributed procesaing to be
important to understand. Neurosciensts, use the processors to model neurons; psychologis and
computer scientists use parallel distributed procesing to develop formual computational Sstms with
some of the flexibility, subtlety, and power of human cognition. (For references, see Anderson &
Hinto., 1981.)

The past two yams have see the emergence of a new type of parallel distributed processing that
employs stochastic procemsors and is bused on a formal mapping between parallel computation and
statistical physics (Hoplield, 1962 Kirkpatrick, Oel~t. & Vecchi, 1M8; Hinton A Sejnowaki, 1983.. b;
Hofatailter, 18; Smoimnsky, 1983). 1 shall call cognitive models of this type hwmad moedels. In this

* pape I present a particular cha of thermal models I call &...udisn models, with allusion to
pnemmiins (Selfridge A Neisser, 1960). 1 will discus how harmonium models differ from other

thermal models, ss well a how thermal models differ from mote traditional parallel distributed
4 processing models, which I will refer to a wtliwla models. Characteristic features of harmonium

models include: an architecture that represents a ptocess/data distinction; a global mathematical entity,
the harmony femcsiau, that drives the processing; stochastic processors; a global systemn parameter, the
ea.mpneloud senywrows; an algorithmic process, eullfg and a new type of system. behavior, freezlq.

The harmony function corresponds to what others who work on thermal models haoe called the
eaergyfamcuk, taking the term from thermal physics. IThe harmny function, which is central to the
processing of harmonium, models, kms an interpretation within the general context of the cognitive
tubk that harmnium models are designed to perform: it measure the self -consistency of a
computational state (Smoleusky, 1983, 1984). This interpretation is what leads, to the differences
between harmonium models and other thermal models.

noe central god of this paper is to introduce a partially-deweloped general analytic framework I
call hamon Mrary. Within this framework harmonium models emerg with a certain dlegree of
inevitability as the description is pushed from the abstract to the implementation level. The
presentation will toughly follow Mares (1962) stratification of descriptions of computational devices
into the computational, algorithmic, and implementation levels. Another level[, intermediate between
the computational and the algorithmic, will also be needed.

I 1. The harmony function actually correspoads to the eseug function sultiplied by -1.
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Harmonium models of particular cognitive processes acquire additional interest when viewed
within the general context of harmony theory. The models are not simply an attempt to simulate
human performance, or to get a machine to "act intelligently'; they are also a vehicle for developing a
general account of cogntition that resides at a highier conceptual level than that of the particular
models.

CemputatluAl Level

Consider the cognitive tasks of constructing a three-dimensional percept from two-dimensional
imags, of constructing a coherent interpretation of a piece of text, and of solving a problem in a
forma domain. These disparate tasks share m underlying structure: the filling in of missing
information, using knowledge about which items fit together in the task environment. Harmony
theory begins with this abstract 'completion task' and a formalization of this sense of 'environment,'.

and gradually descends in abstraction to the level of implementable models of specific cognitive tasks.
The ultimate goal of the research is to devlop a precise characterization of a three related
mathematical structures: (a) a cogrdive system; (b) an env rmnen; (c) the compiedts task. The cognitive
system possesses concepts for representing states of the environment, and knowledge about which
concepts fit together in the environment. The goal is to investigate: or a given cognitdve system. in a
given environment. who set of concepts and knowledge re them will exable he system to perform tit
completion tar?

To initiate this investigation, I formulate an appropriate formalization of the term environment.

Our environment can be viewed as a stream of overlapping episodes of all durations, starting at
all moments of time. Cognition enables organisms to predict with some accuracy what episodes are
likely to result from their actions, given the portion of those episodes about which they already have
knowledge. What is critical about the environment is that different episodes have different
proaities. The basic cognitive task of the organism is the prediction of likely episodes given some
partial knowledge.

For my purposes, then, I adopt theae definitions. An ewirounent is a probability space, the
points of which are called episodes. In the completioa task, information that partially specifies an
episode is gi n as input, and the output is a set of the most probable episodes that are consistent with
the input.

Many of the cognitive tasks that are studied in cognitive science can be viewed as specific
instantiations of the general completion task. In the domain of story understanding, an episode is a
sequence of events and actors' goals. The story partially specifies some episodes; "understanding the
story is the completion of these to full specifications, including omitted events and goals. The
collection of those episodes that could possibly occur in our world, together with their corresponding
probabilities, defines the story understanding environment. In the domain of visual perception, an
episode is a sequence of positions of objects in three-dimensional space. Streams of two-dimensional
images directly specify episodes only partially, and the job of perceptual processing is to complete
those specifications.

Rather than tackle the temporal compleaities of episodes, I will instead take an environment to
be a probability distribution over static entities called seenes. The completion task then generalizes
many interesting cognitive tasks that are free of time, such as understanding descriptions of static
scenes and processing of single, static images.
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In Riley and Smolensky (1984), harmony theory is used to study an interesting static task:
qualitative analysis of the simple electric circuit shown in Figure 1. The task is to answer questiont
like, 'What happens to the circuit if R2 is increased, assuming the voltage of the battery and RI remaiu
unchanged?" Here a "scene" is a set of qaWliwive chanage in circuitfenures. Those sets of changes that
are consistent with the circuit laws of elementary physics define the scenes that have nonzero
probability in this environment. The given question specifies some of the qualitative changes defining a
scene, namely, the changes in the resistances and in the battery's voltage. The task is to complete this
to a full specification of a 'highly probable' scene, i.e., fill in the appropriate changes in the other
circuit quantities like currents and voltage drops. If the information given in the problem uniquely
determines a "correct answer,' then, given the input, one scene has probability one and the others have
probability zero.

The probability distribution for the environment of elementary physics problems is artificial;
there is sharp distinction between scenes that re *allowed' and those that at not, i.e., between those
that have nonzero probability and those that have zero probability. This characterizes a formad
environment, one that can be delimited strictly by formal rules like the circuit laws. While
conventional computers are at home in such environments, people arc not; at least one can argue that
more training is required for people to perform well in formal environments than in informal ones. A
central empirical question for this approach is: What are the properties of she emironments in which
ntwal cogviilve systems cam arnafy perform the compeuion task with some acciracy? At this stage,
intuition must serve in place of an empirical answer. The environments am most likely sprse, with a
huge fraction of the space of all possible scenes having an extremely low probability. Furthermore, we
perceive scenes (in my generalized sense of the word) as groups of entities which am in turn groups of
sub-entitites, and so on. This suggests that the environments with which the human mind is designed
to deal exhibit a kind of modularity: the probability of a scene can be computed by describing it in
terms of modules of various scales and recursively computing the probability that the modules at one
scale would be combined to make the modules of the next larger scale.

Concepts, according to this intuition, correspond to the modules in the environment.
Knowledge about these concepts is what enables us to compute the probabilities of various
combinations of concepts.

To formally define, a this compiwkamsl level, modular environments, cognitive systems, concepts,
V. and knowledge is a major goal of this research. At the moment, however, precise characterizations

corresponding to these notions exist only at the algorithmic level. The next section describes the
intuitions that lie between the algorithmic-level description and a yet-to-be formulated
computational-level description.

Cemputatlmnal/Algirfthmic Level

A completion task can be performed, it is assumed, because prior experience with the
environment has left traces of statistical connections between the information that is given and the
information that must be filled in. The mechanisms which might maintain such traces in the brain are
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Smolensky Harmony Theory

Figure 1. A scries circuit with two resistors, R, and R2. What re the effcts Of aft inCresM in the
resistance Of R2, asuming that Vw,, and the resistomce of Ri remain the same?

-.
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.et considered. Rather, I shall give a strictly formal description of a cognitive system that possess
such traces. This description presupposes a representation of environmental scenes within the
cognitive system.

Each scene in the environment is asumed to be described in the cognitive system by a set of
representution vdrkrdks {R 1, R2, • ,Rs). Each R, is taken (for simplicity) to have value true or fde
for each scene. In the circuit analysis problem, for example, R, and R 2 might represent whether there
is a change in the battery's voltage and current, respectively; each of these will be either true or false

*./ for each scene. The representational variables as a whole ar assumed to support representations of
scenes at all the levels of abstraction employed by the cognitive system; assigning values to some of the
variables may require considerable processing.

The list of true/false R, values for a scene will be called its representation vector 3. Each R has
some probability in a given environment. In the completion task, some of the elements of an R vetor
are specified as input (e.g., RI), and as output the system must give values for the remaining elements
(e.g., R2).

The crucial question for solving the completion task is, what values of various R, variables go
together in the environment? A cognitive system must accumulate the knowledge that answers this
question a it experiences a sample of vectors 2. Each R is assumed to lem many traces, which ae
simply copies of peces of R. Each trace records a single co-ocurrence of the specific values of the R,
variables present in that trace. After considerable experience with the environment, an ensemble of
tracms is built up; this ensemble implicitly encodes the environment's probability distribution.

In this paper we shall not analyze the important question of which pieces of R ae maintained n
,-, traces; the issue is considered in Smolensky (1983). Very roughly, the idea is that each trace records

one of the mad e~ts present in R. 3 For present purposes we asume that the set of traces encoding the
system's knowledge of the environment has been produced either by an unspecified training procem or
by explicit design of the modeller. In the electric circuit problem, for zamnple, the traces am put in by
hand; each one consists of one of the possible instances of changs of circuit quantities that am
consistent with one of the circuit laws. (For instance, one of the traces records the co-occurrence of:
(a) a decrease in the current, (b) a decreae in the voltae drop across resistor 1, and (c) no change in

m the resistance of resistor 1; this is one instance of Ohm's Law for resistor 1.)

The traces are encoded a at of trace vectors {TI, T2, " " " , Tx). Each T, is a piece of some
representation vector R, i.e., a set of true/false values for a subst of the representation variables. T. is
viewed as a vector of values, one for each R1: either tre, f eds, or mvecified.

2. A few remarks on possible neural implementations of harmony theory may be found in Smoleasky (1984).

3 A little more precisely, the idea is this. For esch R experienced by the system, some mechanism transcribes
pieces of It and records them as traces. After experiencing a large number of scenes It, a lap collection of
traes will have accumulated. Some trces will be duplicated many times, others Ia often. Those frequently
duplicated define the primary comepts in terms of which scenes will be processed by the system. Thus the
system's concepts emere frem the awabicd properdes of the traces. Investigation of appropriate mechanisms
for recording traces must therefore center on analyzing the statistical properties of the resulting traces in various
environments. What criteria determine whether the traces produced by some recording mechanism have remon-
able statistics? The primary criterion is the system's performance on the completion tak enabled by those
trues. A simpler criterion thought to undedy pod performance involves the concept of ksrwmy to be dis-
cussed below; this sriuia h rmanr criterion is considered in Smolesky (1983).

l,%..
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Loosely, here is how completions am performed using the traces To. The system checks to see
which traces are consistent with the input; these become active. When active traces specify true/false
values for missing information, these values are used to decide how to fill in the missing information.

Thus, to each trace vector T. is associated an activalm vatw A.. The list of all activation values
- forms the acuivato vector A. For simplicity each A. will be taken to be either active or hufcuve; these

binary values will be sufficient for our purposes (unlike with traditional activation models).

Actually, the assignment of truefalse values to missing information is done in parallel with the
assignment of active/inactive values to the trace variables. To carry out the completion, the system

-- .. 'simultaneously performs searches in the space of all vectors A and in the space of all vectors R that
contain the true/false values given by the input.

The goal of the search is to find those completions R that arm highly probable in the
environment. Intuitively, there is a relationship between thes R and the traces T.. Highly probable
completions ae those containing combinations of modules that occur frequently in the environment.

Such a completion will be highly consistent with many traces. This suggests using, in lieu of a literal
computation of the probability of a completion R, a measure of its goodness that counts the number of

traces with which I is consistent, and the overall delgee of that consistency.

A convenient representation for this measure of goodness incorporates the idea that traces that
are consistent with the input should be active. For any activation vector A and completion R, define 4

H (A.2) - IA. -T.
a

Here the following numerical assignments are used: true - 1, faLse - -1, mupecqifed - 0; actve - 1,
Iwcive - 0. • is the inner product: R T. = jjR(T.)j; this is just the number of representational
variables R, whose values agree with the corresponding values in T., minus the number that disagree.

H(AU) measures how consistent R is with the traces active in A: H is called the emosnyfmc m .
H is the central player in harmony theory because all the decision-making in the system is driven
towards achieving maximal consistency, i.e., harmony. If a trace is consistent with the input, it
becomes active because doing so raises the harmony. If setting a representational variable to a true or

. false value is consistent with active traces, that assignment is made because it raises the harmony. In
v. short, the space of activation vectors A and completions U is searched to find the values that achieve

high harmony. These should be the completions that are most probable in the environment.

An important goal of the theory is to provide a mathematical characterization of modular
environments that allows a proof that high harmony completions are high probability completions. At

- the moment, this identification rests on intuition.

In a sense, the traces serve during search as .nd-couartin. The good solutions are those that

4. Ia Smolesky (1983) and Riley and Smoleusky (1964), a somewhat more complex formula for H is used. Ax-
loses defining the propertie, a harmony function must satisfy will be an important part of the formulation of
harmony theory at the computational level.

'S. r"
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smta y a number of mnti-constraints, i.e., match a number of traces. This has many similarities to
constraint-based search, in which ood solutions are those that Jea to vioeme a number of constraints.
However, the differences m more than technical. It is my to see how a system can /w
anti-constralnts: these e simply the traces left by esperince, records that show what variable values
can go together. It is not s my to lear what values crm go together, when a teachet' or reitorcer
is absent. Furthermore, if environmental probability distributions e sparse, as discussed above, then
it seems more feasible to record dowd co-occurences than forbidde ones.

Algrthel Le ve

Having charactcrized good completions at the computational level (high probability) and at the

computational/alorithmic level (high harmony), it is time to specify an algorithm that will construct
good completions. The algorithm used in harmony thoery is a stochastic one: it constructs a
completion with a probability related to its harmony. The only mathematically viable relationship
(Smoleasky, 1983) is the canocd dmisidwie

ptob(A, R) - a *,M(Aa
•) r

Here a is a normalization constant, and T is a positive system parameter. If two completions have

different harmonies, the more harmonious one will be more probable; if the harmony difference AN/ is
large compared to T, then the ratio of probabilities (e"r) will be large. Thus the reater T, the less
will be the bin in favr of the most harmonious completions, and the more random the completions
will seem. The randomness parameter T is called the caplmad sexmpereae because its role in the
canonical distribution is identical to that of physical temperature in the strictly isomorphic canonical
distribution (Boltzmann law) of statistical mechanics.

Good completions will be overwhelmingly likely if and only if the temperature is very low. Thus
to achieve good performance a low temperature is needed.

In statistical mechanics there is a well4ukown Monte Casrlo search method (the "heat bath
allorithm') that can be used to stochastically explore the problem space of vectors A and R, visiting
points in the space with the probabilities of the canonical distribution (Metropolis, Rosenbluth,
Rosenbluth, Teller, & Teller, 1953; Binder, 199). This algorithm starts at a random point, and
randomly chooses a possible direction of travel. The change in harmony AN that would result from a
step in that direction is computed; the decision to take the step is then made randomly, with
likelihood ratio for taking or not taking the step set equal to e" r . "Choosing a possible direction of
travel" mounts to selecting a sin gk variable A. or R1; "taking a step" mounts to changing the binary
value of the selected variable.

The process of choosing a direction and deciding whether to take a step is iterated. It can be
proved that, eventually, the probability of being at a point is given by the canonical distribution. The
higher T, the more quickly this "thermal equilibrium" is reached.

The practical difficulty with this algorithm is that for the low T values needed to got good
completions, it takes an unacceptably long time to reach thermal equilibrium. A way to get to good
completions faster is to start with a fairly high temperature, and cool h rymen down during the
computation (Kirkpatrick, Gelatt, & Vecchi, 1983). Cooling (or "simulated annlin() is a new
computational process characteristic of thermal models; it brings with it a new computational
behavior: f reerq. As the temperature is lowered, various system variables lock in to values which

%;%P .9 ..
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baoems vesy resistant to champ.

Whot is hap Iening durin the coolin pins is that 7, th, sleb on which the signilcance of
hamny differences is Moutd, is gMEtn INmdl and samler. Early in the processing. only big
humony differences matter the aqtem raods only states of vary low relative harmony; a very crude
cut is made at the problem. A large region of the problem space is .inplored. As the proesn
cont-inus, the systems et am MiS&tlg Surrowlg the ,muc to states with harmony values that ane
closer and dour to the immmm attainable value. This kind of mrch has the advatage that

wheeve its results ar examined. their reliability is as high a cam be achieved in the elapsed time
(loom* speakingA).

A good theoretical undemsanding of bow to repulate the cooling will be difficult to achieve At
the moment, certain techniques sloaw estimates of framing temperatures in simple situations, but
cooling schedules are still largey defned im, ad hoc ways.

The most natural implementation for harmmy theory use a parallel computing network. This
pulel device, heaswdms, insully simulated on a amidl computer.

To implement the Monate Carlo umc algorithm discussed Aovea, we sa up one proesso mr for
sack of the variables A. mnd Rj . According to the dimPe---los fn the previous section, the values of the
activation processor we 1 and 0, while the value for the repeenatdonipesso win+1 and -1.
This isof values is not typical of thermal models.

The algorithm irsnvolves randomly picking a direction In satch space; this amounts to picking
one of the processors. To ensure that only one prnoesor champs its value at a time, the pocossts we
assumed to take a random amount of time to make their decisions and then instantaneously make their
change; the probability of simultaneous changes Is thenm e. Once a change is made, the mew value
muat be available immediately. This type of usymchmumous updating is not typical of activation mtodels,
but is typical of thermal models (Hopleld, 1M.

The algorithm requires that to decide on its new value, a processor must compute the harmony
chap AN that would result from changing its value. To perform this computation, a given prnoeso
must be connected to others in order to rued their values. The required pattern of interconnections,
found by inspection of the hamony function, is gtsphically suammarized in Figure 2, in which each
mode is a procesor. ANi for a give node is a welghted -u of the values of the nodes connected to it;
the weight linking representation node i and trace node a Is (T*),, the I* element of the vector T..
This weight applies to values passed in efthor direction; bidirectional weights we characteristic of

thermal models.

The architece shown in FIgure 2 is not typical of thermal or activation models. The purpose
of the processing is to adt up the aopriate completion on the reprewage mica; the trace nodes

sresolely to mediate between representlon nodes, which wre not directly interconnected. It is useful
tregard the representation nodes a a data blackboard, and the trace vecots 7, (or equivalently the

ptenof connections) m the propum, and the activation values es internal propaum variables.

I -- . ' , "" " z "~~
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Truce Nodes

2 M

Cr.), - +(4or)

Mdned (0)

Reprmsetatiom Nodes

Affe - AA. T.% A, -AR, YOA.(T.)t

Figur 2. A Vaphical reprutation of harmoniua. The nodea denote stchatic promem, mnd
the links denote communication lines.
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In particular it should be noted tha the traditional hierrchical picture of successive vertical
layers of nodes with layer.to-lay vertical connections does not eist here. One cam visualize the
reptesentational nodes being laid out with abstract reprmsentational variables to the right and concrete
variables to the left. Input at the leftmost nodes activates traces that we connected to them; thes
traces we also connected to slightly more abstract representational nodes, which are then asigned
values consistent with the active traes. This in turn activates new traces, and so it goes. Decision-
making paes rightward, bouncing back and forth between the lower to upper layers. In place of a
prwo-ed, rigid vertical hierrchical architecture is a fluid horizontal architecture that can implement a
hierarchy when appropriate. (In fact, the statistical properties of the participation of "nodes on the
right" in the traces that accumulate during experience with an environment are what determine the
"abstract concepts" that dynamically evolve in that environment.)

Once a node ha computed the differenco in harmony AN between its two possible states, the
likelihood ratio for adopting its two states is *"I r . Converting this to the absolute probability of
chuging value gives the result shown in Figure 3. This sort of siginoidal relation between the weighted
mm of the inputs to a node and its decision is common in activation models; however two differences
should be noted. First, in activation models the ordinate of Figure 3 would be a continuous node
value; here, it is a pobabfty for a discrete node value. Second, the slope of the signoidal curve at the
origin, 1T, is not fied; it increues as the computation proceeds.

The processing features visible at the implementation level--i.e., the defining properties of
hamonium-are all strict consequences of the algorithmic-level analysis of harmony theory. Ongoing
development of the theory is aimed at filling the logical and empirical aps linking the analysis at the
algorithmic level to those at higher levels, and pining experience applying harmonium to specific
cognitive tasks.

S.
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prob(chanp) dope 1/"

prob(chauge) -
1 - AN/

Figate 3. The uagnoidul relation between the weighted sum of inputs to a hammonium node (AM)
and the probability that the node chanas its value.
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